Dr. Kemski Sachverständigenbüro Euskirchener Straße 54 D-53121 Bonn

Euskirchener Straße 54 D-53121 Bonn

Tel.: 0228 96292-41 Fax: 0228 96292-49

eMail: kemski@kemski-bonn.de

Prüfbericht 2017041201d

zur

Bestimmung des Radondiffusionskoeffizienten und der Radondiffusionslänge einer Bitumendickbeschichtung "Rasco 1K KMB schrumpfarm S"

Auftraggeber:

Rasco Bitumentechnik GmbH

Imkerweg 32 b

32832 Augustdorf

Auftrag vom:

12.12.2016

Bearbeitungszeitraum:

20.3.2017 bis 4.4.2017

Dieser Prüfbericht umfasst 5 Seiten incl. Deckblatt.

Bankverbindung:

Volksbank Bonn Rhein-Sieg IBAN: DE 51 3806 0186 1007 5860 15 BIC: GENODED1BRS USt.-IdNr.: Steuernummer: DE 283 072 720 205/5147/2608

1. Probenbeschreibung und -vorbereitung

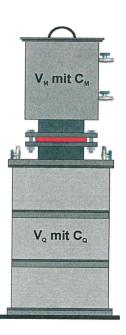
Es handelt sich um eine einkomponentige, kunststoffmodifizierte, polystyrolhaltige Bitumendickbeschichtung (PMBC). Vom Auftragnehmer wurden radondurchlässige Trägerplatten aus HDF (3 mm Dicke) zur Verfügung gestellt, die durch den Auftraggeber fachgerecht mit dem Material beschichtet wurden. Die Dicke des Materials beträgt 4,0 mm.

2. Methodik

Die Prüfung erfolgt in Anlehnung an DIN ISO 11665-10 Entwurf: Ermittlung der Radioaktivität in der Umwelt – Luft: Radon-222 – Teil 10: Bestimmung des Diffusionskoeffizienten in wasserundurchlässigen Materialien mittels Messungen der Aktivitätskonzentration (Stand: August 2013).

Das Material wird zwischen zwei Kammern platziert, wobei in der Quellkammer eine Radonquelle für eine stetige Produktion von Radongas sorgt und in der Messkammer die Konzentrationsänderung des Radon, verursacht durch einen möglichen Radonfluss durch das Material, gemessen wird.

Die nebenstehende Prinzipskizze zeigt die eingesetzte Messanordnung.


Dabei gelten folgende Parameter:

 V_Q = Volumen der Quellkammer = 0,2 m³

 $V_{\rm M}$ = Volumen der Messkammer = 0,006 m³

 C_Q = Gleichgewichts-Radonaktivitätskonzentration in Quellkammer (Bq m⁻³, wird gemessen)

 C_M = Gleichgewichts-Radonaktivitätskonzentration in Messkammer (Bq m⁻³, wird aus gemessenem Radonanstieg berechnet)

Unter "steady state"-Bedingungen gilt für die Messanordnung nach dem 2. Fick'schen Gesetz die folgende eindimensionale Diffusionsgleichung:

$$\frac{\partial c(x,t)}{\partial t} = D \frac{\partial^2 c(x,t)}{\partial x^2} - \lambda c(x,t) = 0$$

mit

 $\mathbf{D} = \text{Radondiffusionskoeffizient } (\text{m}^2 \text{ s}^{-1}),$

 $\mathbf{c}(\mathbf{x}, \mathbf{t}) = \mathbf{c}(\mathbf{x}) = \text{Radonkonzentration im Probenmaterial (Bq m}^{-3}),$

 λ = Zerfallskonstante des Radon-222 (0,0000021 s⁻¹).

Mit den Randbedingungen von konstanten Radonaktivitätskonzentrationen im Reservoir und in der Messkammer sowie einem Gleichgewicht zwischen Radonfluss und Radonzerfall in beiden Kammern kann die Gleichung folgendermaßen gelöst werden:

$$\cosh\!\left(\frac{d}{L}\right) = \frac{C_{\mathcal{Q}}}{C_{\mathcal{M}}} \left[1 - \frac{1 - \left(\frac{C_{\mathcal{M}}}{C_{\mathcal{Q}}}\right)^{2}}{\frac{V_{\mathcal{Q}}}{V_{\mathcal{M}}} \left(\frac{f}{\lambda V_{\mathcal{Q}} C_{\mathcal{Q}}} - 1\right) + 1} \right]$$

mit

d = Dicke der Probe (m)

 $L = Diffusionslänge (m) mit <math>L = \sqrt{\frac{D}{\lambda}}$.

f = Radonproduktionsrate der Quelle (Bq s⁻¹)

Aus der zeitaufgelösten Messkurve der Radonaktivitätskonzentration in der Messkammer wird durch eine nichtlineare Regression die zur oben gezeigten Berechnung notwendige Gleichgewichtskonzentration berechnet.

3. Messung und Ergebnisse

Für die Messungen wurden beim Bundesamt für Strahlenschutz (BfS) kalibrierte Messgeräte (AlphaGuard, RadonScout) eingesetzt.

Es wurden folgende Radonkonzentrationen mit den gerätebedingten Messunsicherheiten (Berechnung der Unsicherheiten für L und D auf dieser Basis) ermittelt:

Quellkammer

$$C_Q = 141~000 \text{ Bq m}^{-3} \pm 10 \%$$

Messkammer

$$C_{\rm M} = 700 \; {\rm Bq \; m^{-3} \pm \; 15 \; \%}$$

Daraus lassen sich folgende Kenngrößen berechnen:

Radondiffusionskoeffizient

$$\mathbf{D} = 9.43 \, \mathbf{E}^{-13} \, \mathbf{m}^2 \, \mathbf{s}^{-1} \, (8.68 \, \mathbf{E}^{-13} - 1.03 \, \mathbf{E}^{-12} \, \mathbf{m}^2 \, \mathbf{s}^{-1})$$

Radondiffusionslänge

$$L = 0.67 \text{ mm} (0.64 - 0.70 \text{ mm})$$

Bezüglich der "Radondichtigkeit" der Bitumendickbeschichtung "Rasco 1K KMB schrumpfarm S" sind landesspezifische Regelungen zu beachten.

In **Deutschland** existiert nach Arbeiten von G. Keller, Universität des Saarlandes, eine Konvention, dass Materialien als *radondicht* bezeichnet werden, wenn ihre Dicke d größer als die dreifache Diffusionslänge L ist $(d \ge 3 L)$.

Für die Bitumendickbeschichtung "Rasco 1K KMB schrumpfarm S" gilt:

$$d = 4.0 \text{ mm} \ge 3 \text{ L} (= 2.01 \text{ mm}).$$

Damit kann das Material nach G. Keller als radondicht bezeichnet werden.

4. Bemerkungen

Die Untersuchungen wurden an den vom Auftraggeber zur Verfügung gestellten Mustern durchgeführt. Die Messungen wurden unter standardisierten Laborbedingungen vorgenommen. Aussagen über die Bedingungen bei einem Einsatz im Bau können daraus nicht abgeleitet werden.

Die Ergebnisse der Prüfung sind nur auf Materialien übertragbar, die identisch mit der gelieferten und untersuchten Probe sind. Abweichungen bezüglich Dicke, Zusammensetzung und Materialalter führen dazu, dass das Prüfzertifikat ungültig wird. Für eine allgemeine Richtigkeit und Gültigkeit wird keine Haftung übernommen.

Beim großflächigen Einsatz des Materials spielt die sachgerechte Verarbeitung des Materials an Stößen, Durchdringungen und Detailabdichtungen eine wesentliche Rolle für die Funktion als Radondiffusionssperre. Entsprechende Hinweise sind ggf. dem zugehörigen technischen Datenblatt bzw. den Verarbeitungsvorgaben für das Material zu entnehmen und zu beachten. Die Untersuchung dieser Detaillösungen war nicht Gegenstand der Prüfung.

Dieser Prüfbericht darf nur vollständig und unverändert weitergegeben werden. Auszüge oder Kürzungen müssen durch den Aussteller des Berichts autorisiert werden.

Das Zertifikat ist fünf Jahre ab Prüfdatum gültig.

Dr. rer. nat. Dipl.-Geol.

ich bestellt und ve

Joachim Kemski Sachverständiger für

Bonn, 12.4.2017

Dr. Joachim Kemski